Thursday, December 18, 2008

Taking Notes

Here are a couple of tips for taking notes in the class.

Listen in Class.

Do not just write down what you see on the board. No teacher is going to write down every word they say and sometimes the important ideas won’t get written down.

Write Down Explanatory Remarks.

Make sure you write down any explanatory remarks the teacher makes. These often won’t get written down by the instructor, but can tell you how to work a particular kind of problem or why the instructor used one formula/method over another for a given problem.

Note Important Formulas/Concepts.

If teacher emphasizes a particular formula or concept then make note of it. This probably means it’s important and important formulas and concepts are much more likely to show up on an exam.

Question Your Teacher.

If you are unclear on something ask questions.

Note Topics You Don’t Understand.

If you are having trouble understanding something being presented note that in the margin and at least write down the key words. Leave yourself a couple of lines so you can fill in the missing details later once you’ve gotten help to understand the concept.

Review/Edit Your Notes.

As soon you can after class go back over your notes. Look for any errors and/or omissions. Fill in any information you didn’t have time to write down in class.

Review Regularly.

At regular intervals sit down and review your notes so that you can learn and retain the information. Remember, that this information will probably be required down the road so it’s best to learn it as soon as possible.

Monday, October 20, 2008

State Eligibility Test (SET)

State Eligibility Test (SET) -
The last date for submitting application is extended to 07.11.2008, and
Examination date is postponed to December 14, 2008.
Click here for application form and details...

Click here for Syllabus...

Friday, September 26, 2008

History Of Maths (In Tamil)

கணிதம்


தென் அமெரிக்காவில் இருந்த பழம் மாயா மக்களின் எண்முறை
கணிதம் (Mathematics) என்பது வணிகத்தில், எண்களுக்கு இடையான தொடர்பை அறிவதில், நிலத்தை அளப்பதில், அண்டவியல் நிகழ்வுகளை வருவதுரைப்பதில் மனிதனுக்கு இருந்த கணித்தலின் தேவைகள் காரணமாக எழுந்த ஓர் அறிவியல் பிரிவாகும். இந்த நான்கு தேவைகளும் பின்வரும் நான்கு பெரிய கணிதப் பிரிவுகளை பிரதிபடுத்துகின்றன:
அளவு (quantity) - எண்கணிதம்
அமைப்பு (structure) - இயற்கணிதம்
வெளி (space) - வடிவவியல்
மாற்றம் (change) - பகுவியல் (analysis) - நுண்கணிதம்
ஆனால் இத்துடன் கணிதம் நிற்கவில்லை.

கணிதத்தில் பல்வகை நுட்பம் செறிந்த வடிவங்களைத் துல்லியமாக விளக்கலாம், அலசலாம். இப்படத்தைக் வரைபடமாகத் தரும் சார்பு:
பொருளடக்கம்
1 கணிதம் என்றால் என்ன?
2 தற்கால கணிதத்தின் விசுவரூபம்
3 கணிதக்கட்டுரை விமரிசனங்கள்
4 இந்தியக்கணித வரலாறு
5 தற்காலத்திய கணிதத்தின் வரலாறு
6 கணிதம் சம்பந்தமான பல்வேறு துணப் பிரிவுகள்
6.1 அளவு (Quantity)
6.2 அமைப்பு (Structure)
6.3 வெளி (Space)
6.4 மாற்றம் (Change)
6.5 கணித அடித்தளங்கள்
6.6 இலக்கமியல் கணிதம்
7 இவற்றையும் பார்க்கவும்



கணிதம் என்றால் என்ன?
எண்களை வைத்துக்கொண்டு உண்டாக்கப்பட்ட கணிப்பியலோ (arithmetic) வடிவங்களை வைத்துக்கொண்டு உண்டாக்கப்பட்ட வடிவியலோ இவைதான் கணிதவியல் என்று நினைப்போர் பலர். இன்னும் சிலர் எண்களுக்குப் பதிலாக குறிப்பீடுகளை வழங்கி அவைகளையும் எண்கள்போல் கணிப்புகள் செய்யும் இயற்கணிதம் தான் கணிதத்தின் முக்கிய பாகம் என்பர். மற்றும் சிலர் வடிவங்களை அலசி ஆராயும் வடிவியல் வளர்ச்சி தான் கணிதத்தின் இயல்பு என்று கூறுவர். ஆனால் கணிதம் இதையெல்லாம் தாண்டிய ஒன்று.

தற்கால கணிதத்தின் விசுவரூபம்


கணிதவியலின் இன்றைய வெளிப்பாடுகளில் இவையெல்லாம் ஒரு கடுகத்தனை பாகம் தான். கணிதம் எண்களில் தொடங்கியதும், எண்களிலும் வடிவங்களிலும் சிறந்த மேதாவிகள் புகுந்து விளையாடின ஈடுபாடுகளினால் பெரிய மரமாக வளர்ந்ததும் உண்மைதான். ஆனால் அத்துடன் அது நிற்கவே இல்லை. இன்று ஒரு அரிய தத்துவ இயலாக, வானளாவிய மரங்கள் கொண்ட பரந்த, செழித்த காடாகவே விசுவரூபம் எடுத்து இன்னும் வேகமாக வளர்ந்துகொண்டே இருக்கிறது. கணிதமில்லாமல் இன்று வேறு எந்தத் துறையுமே முன்னேற முடியாது என்று சொல்லும் அளவிற்கு, கணிதம் எல்லாத் துறைகளிலும் உள்ளார்ந்து படர்ந்திருக்கிறது.

கணிதக்கட்டுரை விமரிசனங்கள்


கணித விமரிசனங்கள் (Mathematical Reviews) என்ற ஒரு பத்திரிகை 1940 இல் ஒரு சில பக்கங்களுடன் தொடங்கி ஒவ்வொருமாதமும் கணிதத்தில் எழுதப்படும் புது ஆய்வுக்கட்டுரைகளை விமரிசிக்கவென்றே ஏற்படுத்தப்பட்டது. அது இன்று மாதத்திற்கு 2000 பக்கங்கள் கொண்டதாக வளர்ந்து, ஆயிரக்கணக்கான ஆய்வுப்பத்திரிகைகளிலிருந்து ஏறக்குறைய இருபது லட்சம் கட்டுரைகளின் விமரிசனத்தை கணிதப் பொக்கிஷமாகக் காத்து வருகிறது.

இந்தியக்கணித வரலாறு

"எண்ணென்ப ஏனை எழுத்தென்ப இவ்விரண்டும்
கண்ணென்ப வாழும் உயிர்க்கு" - திருவள்ளுவர்
என்று கூறி கணிதத்தின் முக்கியத்துவத்தை திருவள்ளுவர் 2000 வருடங்களுக்கு முன்பே நிலைநிறுத்தியுள்ளார். திருக்குறளில் ஒன்று, இரண்டு, மூன்று, நான்கு, ஐந்து, "அறு", "எழு", "எண்", பத்து, "கோடி" ஆகிய எண்கள் அல்லது தொகையீடுகள் அங்காங்கே பயன்படுத்தப்பட்டுள்ளன. எனினும் "தொண்டு" அல்லது "தொன்பது" பயன்படுத்தப்படவில்லை.


தமிழ் எண்ணுருக்கள், தமிழில் பூச்சியத்துக்கு குறியீடு இல்லை.
எண்களை எழுதுவதில் இடமதிப்புத் திட்டத்தையும் பூச்சியம் என்ற கருத்தையும் உருவாக்கி வருங்காலக்கணிதக்குறியீட்டுமுறைக்கு அடிகோலிட்டது பழையகால இந்தியா. இதைத்தவிர இந்தியக் கணிதவியலர்கள் (ஆரியபட்டர், பிரம்மகுப்தர், பாஸ்கராச்சாரியர், இன்னும் பலர்) மேற்கத்தியநாடுகள் மறுமலர்ச்சியடைந்து அறிவியலில் வளர்வதற்கு முன்னமேயே பலதுறைகளில் முன்னேற்றம் கண்டிருந்தனர்.
வேதகாலத்துக்கணிதத்தின் கணிப்பு முறைகள்
சுல்வசூத்திரங்களின் வடிவியல்


சூனியமும் இடமதிப்புத் திட்டமும்


எண்களின் அடிப்படைகளைப்பற்றி ஜைனர்கள்
பாக்சாலி கையெழுத்துப்பிரதிகளின் சமன்பாடுகள்
வானவியல்
கேரளத்தில் நுண்கணிதத்தின் முதல் கண்டுபிடிப்புகள்
இவையெல்லாம் இந்தியக்கணிதத்தின் சிறப்புகள்.

தற்காலத்திய கணிதத்தின் வரலாறு


14 வது நூற்றாண்டில் தொடங்கி, சென்ற ஆறு நூற்றாண்டுகளில் கணிதத்தின் வளர்ச்சியைத் தெரிந்துகொள்ள கணிதவியலாளர்கள் பலரின் வரலாறுகளே தக்க சான்றுகள். ஃபெர்மா, நியூட்டன், ஆய்லர், காஸ், கால்வா, ரீமான், கோஷி, ஏபல், வியர்ஸ்ட்ராஸ், கெய்லி, கேன்ட்டர், ஹில்பர்ட், இப்படி இன்னும் நூற்றுக்கணக்கானவர்கள் பங்கு கொண்டு உருவாக்கப்பட்ட கணிதம் இன்றைய கணிதம்.

கணிதம் சம்பந்தமான பல்வேறு துணப் பிரிவுகள்


கணிதத்தின் தற்காலப் பிரிவுகளைப் பற்றி பட்டியலிடவேண்டுமானால் அப்பட்டியலில் 100 தாய்ப்பிரிவுகளாவது இருக்கும். இப்பிரிவுகளுக்குள் மிகவும் வியப்பு தரும் உறவுகள் உண்டு. இவைகளிலெல்லாம் கணிதத்திற்கென்றே தனித்துவம் வாய்ந்த மரபும் குறிப்பிடத்தக்கது. இம்மரபுதான் கணிதத்தை மற்ற அறிவியல் துறைகளிலிருந்து பிரித்துக் காட்டுகிறது.இவைதவிர, கணிதத்தின் அடிப்படைகளுக்கும் மற்ற துறைகளுக்குமான தொடர்பை தருக்கவியலும் ஆய்கின்றது. மேலும் புள்ளியியல் போன்ற நேரடியாகப் பயன்படும் கணிதத் துறைகளும் உண்டு

அளவு (Quantity)
எண்கணிதம்
அளவியல்
இயல்பெண்கள்
முழு எண்கள்
விகிதமுறு எண்கள்
மெய்யெண்கள்
செறிவெண்கள்

அமைப்பு (Structure)
இயற்கணிதம்
எண் கோட்பாடு
நுண்புல இயற்கணிதம்
குலக் கோட்பாடு (Group Theory)
Order theory

வெளி (Space)
வடிவவியல்
முக்கோணவியல்
வகையீட்டு வடிவவியல் (Differential geometry)
இடவியல்
பகுவல்

மாற்றம் (Change)
நுண்கணிதம்
திசையன் நுண்கணிதம்
வகையீட்டு சமன்பாடுகள்
இயங்கியல் அமைப்புகள் (Dynamical systems)
ஒழுங்கின்மை கோட்பாடு



கணித அடித்தளங்கள்
தருக்கவியல் (கணிதம்)
கணக் கோட்பாடு, கணம் (கணிதம்)
விகுதிக் கோட்பாடு (Category theory)

இலக்கமியல் கணிதம்
சேர்வியல்
கணிமைக் கோட்பாடு
வரைவியல் (Cryptography)
கோலக்கோட்பாடு (Graph theory)

இவற்றையும் பார்க்கவும்
கணிதக் கலைச்சொற்கள் (ஆங்கில அகர வரிசையில்)
கணித மரபு
கணிதப் பிரிவுகளின் உறவுகள்
கணித அமைப்பு
கணிதத்தின் நிலைப்பிகள்

Source : Wikipedia

Subscribe via email/ Newsletter

Enter your email address:

Delivered by FeedBurner


Click here to get Sureshmath-newsletter